Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease
نویسندگان
چکیده
Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.
منابع مشابه
The Single Nucleotide Polymorphisms in the C-reactive Protein Gene: are they Biomarkers of Cardiovascular Risk?
Recent pre-clinical and clinical studies have revealed the C-reactive protein gene (CRP) is related to the degree of acute rise in plasma C-reactive protein (CRP) levels. Moreover, single nucleotide polymorphisms (SNPs) in the CRP gene could associate with increased risk of cancer, atherosclerosis, diabetes mellitus, bowel disease, rheumatoid arthritis, psoriasis, obstructive pulmonary disease,...
متن کاملSingle Nucleotide Polymorphism (SNP) in the Adiponectin Gene and Cardiovascular Disease
Dear Editor, The recent article by Mohammadzadeh et al.[1] on the latest issue of this Journal showed that the T allele +276G/T SNP of ADIPOQ gene is more associated with the increasing risk of coronary artery disease (CAD) in subjects with type 2 diabetes. Adipocytes were described in myocardial tissue of CAD patients and their role recently discussed[2,3]. Susceptibility to CAD by polymorp...
متن کاملEvaluation of a Genetic Test for Diagnose of Primary Hypolactasia in Northeast of Iran (Khorasan)
Objective(s) Primary or adult type hypolactasia, the most common enzyme deficiency in the world, is due to reduced lactase activity in the intestinal cell after weaning. Lactase non-persistence is inherited as an autosomal recessive trait. A DNA variant, single nucleotide polymorphism C/T−13910 which is located on 13910 base pairs (bp) upstream of the lactase gene (LCT) at chromosome 2 has been...
متن کاملComputational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase
ABSTRACT Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کامل